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Abstract. A stochastic differential equation with random frequency and driving force is
investigated. The exact first and second moment of the solution of the equation are obtained by
means of an elementary mathematical method, namely, iteration solving the differential equation in
a short time. Some results are consistent with earlier known studies, such as an equilibrium value
of the second moment for constant frequency and the divergence of the value for random frequency,
by considering limiting cases. It is also found that the transient behaviour of the moments greatly
depends on parameters especially when the equilibrium second moment is near the divergence
point.

1. Introduction

The problem discussed in this paper is stochastic behaviour of an oscillator displacement x(t)
which is subject to the following linear stochastic differential equation:

d2x/dt2 + α dx/dt + ω2(t)x = f (t) (1)

where α is a deterministic constant parameter and ω(t) and f (t) are stochastic variables
corresponding to a fluctuating frequency and driving force, respectively. To accomplish an
exact statistical treatment of the equation, we assume that ω(t) and f (t) cannot vary with time
except when t is at an integral number multiples of 	tf or 	tω and that there are neither time
correlation nor correlation between ω(t) and f (t). ω(t) and f (t) can then be written as

f (t) = fl for 	tf (l − 1) � t < 	tf l (2)

ω(t) = ωl for 	tω(l − 1) � t < 	tωl (3)

where l is an integer. If we write

ω2
l = ω2

0(1 + εl) (4)

and take

〈f (t)〉 = 0 (5)

〈εl〉 = 0 (6)

then

〈fifj 〉 = f 2δij /	tf (7)

〈ω2
i ω

2
j 〉 = ω4

0(1 + 〈ε2〉δij ) (8)
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where the bracketed terms denote ensemble averages and i and j are integers. 	tf is required
as the denominator in (7) to maintain the condition

∑
i〈fifj 〉	tf = f 2, which is needed to

obtain the limiting expression calculated in sections 3 and 4. A more detailed description of
ω(t) and f (t) will be provided in the following sections.

Over the last few decades, attempts to find a stochastic property of ω(t) and f (t) such
that an exact equilibrium value of the moment 〈x2〉eq is obtained have been successful. For
instance, Bourret [1] assumed a two-valued Markov process for the frequency ω(t) and West
[2] assumed delta-correlated cumulants [3] of the frequency ω(t). It was found in those
papers that the effects of the frequency fluctuation results in renormalization of the parameter
α and in energetic instability [4], i.e. 〈x2〉eq can be infinity when some parameters become
particular values. To find such exact results, however, a very refined mathematical approach
must be required, therefore, it is very difficult to find another example as successful. In
this paper, the need for advanced mathematical equipment is avoided by the abandonment of
considering continuous changing of ω(t) and f (t). It may seem that the method described
in this paper is elementary; however, it is possible to develop a method for more complicated
cases, step by step, without finding an advanced mathematical idea. Furthermore, the method
has other advantages such as making it possible to obtain not only equilibrium values of the
second moment 〈x2〉eq but also transient values of the second moment 〈x2(t)〉. Obtaining such
transient values of the second moment might be important for awareness of the dynamics of
the system.

It has long been suggested that stochastic equations can be used for investigating several
kinds of physical and technological systems such as wave propagation in continuous random
media, scattering of waves by randomly distributed scatters, control theory and so on [5–
8]. Especially in recent years, the study of stochastic differential equations involving both
multiplicative and additive noise has caught attention, such as the dye laser model, polymers
in turbulent flow and so on [9–11]. Power-law behaviour of the probability distribution is
sometimes inferred, which should be related to the divergence of the moments mentioned
above [12–14]. Such behaviour is widely seen in actual phenomena. For example, in cases
such as the frequency of jams in internet traffic [15], polymer conformations [11], stock market
price changes [16] and so on, therefore a general understanding of the power law is essential.
In this paper, although the existence of power-law behaviour of the probability distribution
function is not proved, divergence behaviour of the second moment and a condition for it
is derived. Two different noises were also introduced by another physical reasoning such
that internal noise and external noise of the system were to be considered separately [17, 18].
Hopefully this paper will become a starting point for the understanding of this broad area of
research as just previously mentioned.

2. Our method of investigation

In this section, fundamental equations to obtain the moments 〈x(t)〉 and 〈x(t)2〉 are derived.
As a beginning, let us consider the case of constant ω, and after that, extend the method to the
case of variable ω.

From the assumption of a constant driving force (2) in the time range 0 � t < 	tf ,
x(	tf ) is obtained as a general solution of a second-order ordinary differential equation with
constant coefficients as follows.

For α2 − 4ω2 > 0,

x(	tf ) = e−α	tf /2(a exp(−(α2 − 4ω2)1/2	tf /2) + b exp((α2 − 4ω2)1/2	tf /2)) + f1/ω
2

(9)
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and for α2 − 4ω2 < 0,

x(	tf ) = e−α	tf /2(a exp(i(4ω2 − α2)1/2	tf /2) + b exp(−i(4ω2 − α2)1/2	tf /2)) + f1/ω
2

(10)

where i is pure imaginary and where a and b are constants determined by initial condition x(0)
and dx(0)/dt , that is, for the case of α2 − 4ω2 > 0,(
a

b

)
=
(

(−α + k)/2k −1/k

(α + k)/2k 1/k

)(
x(0)

dx(0)/dt

)
− f1/ω

2

(
(−α + k)/2k

(α + k)/2k

)
(11)

k =
√
α2 − 4ω2 (12)

and for the case of α2 − 4ω2 < 0,(
a

b

)
=
(

(α + ik)/2ik 1/2ik

(−α + ik)/2ik −1/2ik

)(
x(0)

dx(0)/dt

)
− f1/ω

2

(
(α + ik)/2ik

(−α + ik)/2ik

)
(13)

k =
√

4ω2 − α2. (14)

From (9), (10) and their differentials„

x(	tf ) =
(

x(	tf )

dx(	tf )/dt

)

can be written as linear transformation of
(
a

b

)
, so that x(	tf ) can also be written as a linear

transformation of

x(0) =
(

x(0)
dx(0)/dt

)
by using (11) or (13). Therefore, a relation between x(	tf ) and x(0) is written in the following
form:

x(	tf ) = Mx(0) + f1v. (15)

If we define xl as

xl = x(t = 	tf l) =
(

x(t = 	tf l)

dx(t = 	tf l)/dt

)
(16)

where l is an integer, then the values of the components of xl corresponding to a sample
sequence of the noise {f1, f2, . . . , fl} can be obtained by iteration of the same transformation
to (15) since the relation between xl+1 and xl is the same as the relation between x1 and x0

for all l.
After diagonalization, we obtain

yl = Syl−1 + flu (17)

where S, U , u and yl are defined and calculated as follows:

S =
(

λ(+) 0

0 λ(−)

)
= U−1MU (18)

λ(±) = exp
(
(−α ± k)	tf /2

)
(19)

U =
(

1 1

(k − α)/2 (−k − α)/2

)
(20)
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for α2 − 4ω2 > 0 and

λ(±) = exp
(
(−α ± ik)	tf /2

)
(21)

U =
(

1 1

(ik − α)/2 (−ik − α)/2

)
(22)

for α2 − 4ω2 < 0.

yl ≡
(
y
(1)
l

y
(2)
l

)
= U−1xl (23)

u =
(
u(1)

u(2)

)
= U−1v

= 1/2kω2

(
(−k − α)(exp ((k − α)	tf /2) − 1)

(−k + α)(exp ((−k − α)	tf /2) − 1)

)
for α2 > 4ω2 (24)

= i/4kω2

(
(α + ik)(exp ((ik − α)	tf /2) − 1)

(−α + ik)(exp ((−ik − α)	tf /2) − 1)

)
for 4ω2 > α2. (25)

By solving (17), the expression of y(1)l and y
(2)
l can be written in the following summation

form:

y
(1)
l = (λ(+))ly

(1)
0 + u(1)

l∑
j=1

(λ(+))l−j fj (26)

y
(2)
l = (λ(−))ly

(2)
0 + u(2)

l∑
j=1

(λ(−))l−j fj . (27)

Equations (26) and (27) are the first fundamental equations presented in this paper. These
shall be used in the derivation of the moments for the case of constant ω in section 3.

The expressions of xl and (dx/dt)l are obtained by the inverse transformation of (23).
The moments 〈x2

l 〉 and 〈xl〉 are also obtained through averaging an calculation, which will be
written in terms of various kinds of moments of fl . The statistical treatments of the results
will be put off until the next section and the extension of the method to the case of variable ω
will be briefly carried out.

Let ω(t) be a random variable whose value can change only when t is an integer times a
time interval 	tω. For simple computation, let 	tω be an integer times 	tf , i.e.

	tω = m	tf (28)

where m is a constant integer. This assumption applies for a situation where the frequency
fluctuation is slower than the changing rate of the driving force. The constant integer m must
be physically selected so as to express the changing rate of ω(t). In fact, if 	tf is very small
	tω can be adjusted almost freely.

In a limited time range such as 0 � t < 	tω, the situation does not alter from the case of
constant ω. Therefore, if we introduce Y (1)

1 = y
(1)
1×m and Y

(2)
1 = y

(2)
1×m, the recursion relations

of Y (1)
n and Y (2)

n would seem to be obtained from (26) and (27). However, it should be noted
that the transformation of (23) must be performed according to a randomly changed matrix
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U in each time interval. If we introduce the transformed variable Yn = U−1
n+1xn×m, this next

formula holds from (26), (27) and the inverse transformation of (23),

Yn = U−1
n+1Xn

= U−1
n+1{Un!nYn−1 + UnFn} (29)

where we have defined Xn and other variables such as

Xn =
(
Xn

Ẋn

)
=
(
xn×m

ẋn×m

)
(30)

!n =
(

(λ(+)n )m 0

0 (λ(−)
n )m

)
=
(

!(+)
n 0

0 !(−)
n

)
(31)

and

Fn =
(
F (1)
n

F (2)
n

)
=
(
u(1)n

∑m
j=1(λ

(+)
n )m−j f(n×m)+j

u(2)n

∑m
j=1(λ

(−)
n )m−j f(n×m)+j

)
. (32)

The reason why the subscriptn is used in these definitions is because these values are dependent
on frequency fluctuation ωn. Statistical calculation based on this formulae will be performed
in section 4.

The non-diagonal matrix in (29)

U−1
n+1Un =

(
(kn+1 + kn)/2kn+1 (kn+1 − kn)/2kn+1

(kn+1 − kn)/2kn+1 (kn+1 + kn)/2kn+1

)
(33)

represents the difference between the case of random and constantω and how the two decreasing
modes Y (1) and Y (2) are related. However, as a very rough approximation, we can consider
the matrix (33) as the identity matrix when the frequency fluctuation intensity is small. Under
such an approximation, the recursion relation about Y (1)

n and Y (2)
n can be derived as before

because of the diagonalized form of equation (29). According to the approximation, Y (1)
n and

Y
(2)
l can be written as

Y (1)
n =

n∏
t=1

(!
(+)
t )Y

(1)
0 +

n−1∑
j=1

j−1∏
t=0

(!
(+)
n−t )F

(1)
n−j + F (1)

n (34)

Y
(2)
l =

n∏
t=1

(!
(−)
t )Y

(2)
0 +

n−1∑
j=1

j−1∏
t=0

(!
(−)
n−t )F

(2)
n−j + F (2)

n . (35)

The expressions (34) and (35) are not exact but are sometimes meaningful to find qualitative
results easily, which will be briefly described in section 4.

All results derived in this section may be useful when considering various kinds of random
variablesfl andω2

n with correlation. However, in the following sections in which the calculation
of moments 〈X2

n〉 and 〈Xn〉 will be performed, f ’s and ω’s are assumed to be independent
random variables as described in section 1 in order to find exact results easily.
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3. Results for constant ω

In this section, moments of the displacement xl are calculated and examined for the case of
constant ω.

Equation (17) yields the following formulae:

y
(1)
l = λ(+)y

(1)
l−1 + flu

(1) (36)

(y
(1)
l )2 = (λ(+)y

(1)
l−1)

2 + 2λ(+)y(1)l−1flu
(1) + (flu

(1))2. (37)

Using (5) and the statistical independence between fl and y
(1)
l−1 we obtain through averaging

of (36) and (37),

〈y(1)l 〉 = λ(+)〈y(1)l−1〉 (38)

〈(y(1)l )2〉 = (λ(+))2〈(y(1)l−1)
2〉 + (u(1))2〈(fl)2〉. (39)

The equilibrium value liml→∞〈xl〉 = 〈x〉eq and liml→∞〈x2
l 〉 = 〈x2〉eq can be handled

easily. Considering the property such that 〈y(1)〉eq = 〈y(1)l+1〉 = 〈y(1)l 〉 for large l, equation (38)
yields 〈y(1)〉eq = 0. Since a similar calculation yields 〈y(2)〉eq = 0, 〈x〉eq is obtained as
0 by using (23), which is a trivial result. Considering the property such that 〈(y(1))2〉eq =
〈(y(1)l+1)

2〉 = 〈(y(1)l )2〉 for large l, equation (39) yields

〈(y(1))2〉eq = (u(1))2〈(fl)2〉/(1 − (λ(+))2). (40)

One can obtain through a similar calculation,

〈y(1)y(2)〉eq = u(1)u(2)〈(fl)2〉/(1 − λ(+)λ(−)) (41)

〈(y(2))2〉eq = (u(2))2〈(fl)2〉/(1 − (λ(−))2) (42)

where explicit forms of 〈(fl)2〉, u(1), u(2), λ(+) and λ(−) are given in (7), (19), (21), (24) and
(25). For example, when α2 > 4ω2, (λ(±))2 and (λ(+)λ(−)) can be rewritten by (19) as

(λ(±))2 = exp ((−α ± k)	tf ) (43)

(λ(+)λ(−)) = exp (−α	tf ). (44)

The equilibrium value of the second moment 〈x2〉eq can be obtained by using (23) and
substituting these explicit forms into (40)–(42) as

〈x2〉eq = 〈(y(1))2〉eq + 2〈y(1)y(2)〉eq + 〈(y(2))2〉eq
= (f 2/4k2ω4	tf )

{
(k + α)2(exp ((k − α)	tf /2) − 1)2/(1 − exp ((k − α)	tf ))

−8ω2(exp ((k − α)	tf /2) − 1)

×(exp ((−k − α)	tf /2) − 1)/(1 − exp (−α	tf ))

+(α − k)2(exp ((−k − α)	tf /2) − 1)2/(1 − exp ((−k − α)	tf ))
}

(45)

for α2 − 4ω2 > 0 and

〈x2〉eq = (f 2/2ω2k2	tf ){A/(1 + exp (−α	tf ) + 2 exp (−α	tf /2) cos (k	tf /2))

+B/(1 − exp (−α	tf ))} (46)

for α2 − 4ω2 < 0, where

A = (k2 − α2)(1 − exp (−α	tf )) − 4kα exp (−α	tf /2) sin (k	tf /2) (47)

B = −4ω2(− exp (−α	tf ) + 2 exp (−α	tf /2) cos (k	tf /2) − 1). (48)



Exact second moment of oscillator displacement 6391

Noting that expressions (40) and (42) are complex conjugates makes the derivation of (46)
easier. This situation is similar to the derivation of (60).

To examine these results, let us consider the limiting case of small 	tf such that(
e−A	tf − 1

) (
e−B	tf − 1

)
/
(
e−C	tf − 1

) � AB	tf /C +
{
AB − (

BA2 + AB2
)
/C
}
	t2

f /2.

(49)

By applying this limiting procedure to (45) or (46), we obtain

lim
	tf →0

〈x2〉eq = f 2/2αω2 + o
(
(	tf )

2
)

(50)

which holds in either cases of α2 − 4ω2 > 0 or α2 − 4ω2 < 0. Formula (50) agrees with a
well known result obtained by Uhlenbeck and Ornstein [19, 20], which is an expected result
since the right-hand side of (7) becomes a delta function as 	tf tends to 0. Since the equation
is linear and the noise is additive, its distribution should be entirely characterized by these first
and second moments. However, this property will be changed by frequency fluctuation. The
linear term in (50) with respect to 	tf is zero, which indicates that the increase of 〈x2〉eq is
hardly caused by a small 	tf .

In the limiting case of	tf → ∞, the right-hand side of (45) and (46) becomes the average
value of equilibrium x2 determined by the deterministic differential equation, that is 〈f 2〉/ω4,
which tends to 0 as 	tf → ∞ under the assumption of (7).

The time dependence of 〈xl〉 and 〈x2
l 〉 can also be derived from (38) and (39) as follows.

With (38) and (39), 〈y(1)l 〉 and 〈(y(1)l )2〉 − 〈(y(1))2〉eq are geometric series with an equal ratio
of (λ(+)) and (λ(+))2, respectively. Hence,

〈y(1)l 〉 = (λ(+))l〈y(1)0 〉 (51)

〈(y(1)l )2〉 = (λ(+))2l(〈(y(1)0 )2〉 − 〈(y(1))2〉eq) + 〈(y(1))2〉eq). (52)

A similar computation can be carried out for 〈y(2)l 〉, 〈y(1)l y
(2)
l 〉 and 〈(y(2)l )2〉. Then, 〈xl〉 and

〈x2
l 〉 can be obtained by using (23) as

〈xl〉 = (λ(+))l〈y(1)0 〉 + (λ(−))l〈y(2)0 〉 (53)

〈x2
l 〉 = (λ(+))2l(〈(y(1)0 )2〉 − 〈(y(1))2〉eq) + 2(λ(+)λ(−))l(〈y(1)0 y

(2)
0 〉 − 〈y(1)y(2)〉eq)

+(λ(−))2l(〈(y(1)0 )2〉 − 〈(y(1))2〉eq) + 〈x2〉eq . (54)

Formula (54) depends on the initial conditions of y(1)0 and y(2)0 , which are determined by initial
conditions of x0. For example, for the case of α2 − 4ω2 > 0, from (23)

(y
(1)
0 )2 = ((−k − α)x0/2 − (dx/dt)0)

2/k2 (55)

y
(1)
0 y

(2)
0 = ((−k − α)/2 − (dx/dt)0)((−k + α)/2 + (dx/dt)0)/k

2 (56)

(y
(2)
0 )2 = ((−k + α)/2 + (dx/dt)0)

2/k2. (57)

Finally, considering the time dependence of variance 〈(xl − 〈xl〉)2〉. It can be easily seen
that 〈(xl − 〈xl〉)2〉 is independent of the initial condition x0. From (23), (26), (27) and (53), if
the initial condition have no distribution,

xl − 〈xl〉 = y
(1)
l + y

(2)
l − 〈y(1)l + y

(2)
l 〉

= u(1)
l∑

j=1

(λ(+))l−j fj + u(2)
l∑

j=1

(λ(−))l−j fj . (58)
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This equation is independent of initial conditions. Averaging the square of (58) yields,

〈(xl − 〈xl〉)2〉 = 〈f 2
l 〉{(u(1))2(1 − (λ(+))2l)/(1 − (λ(+))2)

+2u(1)u(2)(1 − (λ(+))l(λ(−))l)/(1 − λ(+)λ(−))

+(u(2))2(1 − (λ(−))2l)/(1 − (λ(−))2)}
= 〈(y(1))2〉eq(1 − (λ(+))2l) + 2〈y(1)y(2)〉eq(1 − (λ(+))l(λ(−))l)

+〈y(2)〉eq(1 − (λ(−))2l) (59)

where cross terms have been vanished from (7). Instead (40)–(42) have been used. It is
observed from (59), (43) and (44) that, for the case of α2 − 4ω2 > 0, there are three modes
of approaching the equilibrium value of 〈x2〉eq such as exp (−α ± k)	tf l and exp (−α)	tf l.
While, for the case of α2 − 4ω2 < 0, substitution of (21) for λ(±) of (59) yields (refer to below
equation (48))

〈(xi − 〈xl〉)2〉 = 2{Im{〈(y(1))2〉eq} sin k	tf l − Re{〈(y(1))2〉eq} cos k	tf l} exp(−α	tf l)

−2〈y(1)y(2)〉eq exp(−α	tf l) + 〈x2〉eq . (60)

It is interesting that not only can the mean value of xi oscillate, but so does the order of
displacement from its mean value.

4. Results for a variable ω

In this section, the displacement moments 〈x2(t)〉 are calculated and examined for the case of
variable ω. The most fundamental equation for this case is (29), from which we can derive the
following equation by multiplying Un+1 on the left:

Xn = LnXn−1 + F̃n (61)

where the matrix Ln and the vector F̃n have been defined as

Ln = Un!nU
−1
n

=
(

(α + kn)!
(+)
n /2kn + (α − kn)!

(+)
n /2kn !(+)

n /kn − !(−)
n /kn

−ω2
n!

(+)
n /kn + ω2

n!
(−)
n /kn (α − kn)!

(+)
n /2kn + (α + kn)!

(+)
n /2kn

)

(62)

F̃n ≡ UnFn. (63)

Noting statistical independence between Xn andLn and between Fn and ofLn and the property
that 〈Fn〉 equals zero, which is derived from (5) and (32), we can derive recursion relation for
the moments after an averaging procedure for each squared element of Xn in (61),


〈X2
n〉

〈XnẊn〉
〈Ẋ2

n〉


=




〈(L(11)
n )2〉 2〈L(11)

n L(12)
n 〉 〈(L(12)

n )2〉
〈L(11)

n L(21)
n 〉 〈L(12)

n L(21)
n + L(11)

n L(22)
n 〉 〈L(12)

n L(22)
n 〉

〈(L(21)
n )2〉 2〈L(21)

n L(22)
n 〉 〈(L(22)

n )2〉






〈X2
n−1〉

〈Xn−1Ẋn−1〉
〈Ẋ2

n−1〉




+




〈(F̃ (1)
n )2〉

〈F̃ (1)
n F̃ (2)

n 〉
〈(F̃ (2)

n )2〉


 (64)

≡ L �Xn−1 + F . (65)
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In this equation the subscript n has been omitted in L and F because of the stationary
property.

We can discuss several exact statistical properties of the displacement moment starting
from (65). At first, from the fact that the equilibrium second moment is expected to have the
property �Xn = �Xn−1 ≡ �Xeq , the formula

Xeq = (I − L)−1F (66)

is derived where (I −L)−1 means the inverse of the matrix (I −L). This is the general formula
for the second moment under the assumption. Some remarkable results such as divergence
behaviour can be derived from it in the following. For a simple calculation of Xeq , we introduce
further assumption that 	tf � 0 and ω2

n can only take two values

ω2
0(1 ± ε) (67)

with equal probability. Under such an assumption, the average over frequency fluctuations at
one time can be obtained by summing the two realizable values corresponding to ω2

n divided
by two. From this the elements of (I − L) can be obtained. The elements of F can also be
calculated by averaging with regard to the driving force fluctuation, which is similar to getting
(40)–(42). In the situation where α2 is larger than 4ω2(t),

F (1) = f 2〈(kn + α)(1 − (!(+)
n )2)/4k2

nω
2
n〉 − 2f 2〈(1 − !(+)

n !(−))/k2
nα〉

+f 2〈(−kn + α)(1 − (!(−))2)/4k2
nω

2
n〉 (68)

F (2) = −f 2〈(1 − (!(+)
n )2)/2k2

n〉 + f 2〈(1 − !(+)
n !(−))/k2

n〉 − f 2〈(1 − (!(−))2)/2k2
n〉 (69)

F (3) = f 2〈(α − kn)(1 − (!(+)
n )2)/4k2

n〉 − 2f 2〈ω2
n(1 − !(+)

n !(−))/k2
nα〉

+f 2〈(kn + α)(1 − (!(−))2)/4k2
n〉 (70)

where we have used (7) and (49). For the case of 4ω2(t) > α2, an alternating point occurs on
substituting ikn for kn.

In this way, the explicit form of the equilibrium moment can be obtained which can
be mathematically involved but is exact. One of the behaviours of the second displacement
moment is plotted in figure 1 with respect to ε and 	tω. Figure 1 indicates that the second
moment becomes infinite when 	tω is located on a certain interval and ε is beyond any critical
values. The divergence of the equilibrium second moment reminds us of another example of an
oscillator with fluctuating frequency studied in previous papers mentioned in section 1. It is to
be noted that the divergence of the equilibrium second moment is related to the behaviour of a
determinant |I −L|, because |I −L| is considered as the denominator of (I −L)−1. In figure 2
two cases of the behaviour of |I − L| with respect to the parameter 	tω are plotted, one of
which has negative values in some intervals corresponding to the divergence of the equilibrium
second moment (refer to figure 3). The behaviour infers that the oscillating property of |I −L|
with respect to 	tω is necessary for the divergence of the second moment to exist which can
never be seen in the case of α2 > 4ω2(t).

Transient behaviour of first and second moments of the displacement can be examined,
respectively, in (61) and (65) because the behaviour is determined by eigenvalues of 〈Ln〉 and
L. The explicit form of eigenvalues of 〈Ln〉 can easily obtained as

EigL = 1
2

{
〈L(22)〉 + 〈L(11)〉 ± (

(〈L(22)〉 − 〈L(11)〉)2 + 4〈L(12)〉〈L(21)〉)1/2
}
. (71)

The eigenvalues of L would be more involved, but the calculation can be carried out. In
figure 4, the relaxation time before reaching its equilibrium moment is plotted with respect to
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Figure 1. Typical behaviour of the second moment. This plot shows the equilibrium second
moment in the limiting case of 	tf → 0 for α = 1.2, ω0 = 4 and f = 1. The divergence can take
place only when the 	tω is in a limited region and ε is beyond critical values.

Figure 2. Plot of |I −L| with respect to the parameter 	tω for α = 1.2, ω0 = 4 and f = 1. When
ε = 0.88, |I − L| is oscillating with a region of negative values, corresponding to the divergence
of the equilibrium second moment as shown in figure 3. This figure infers that oscillating property
of |I − L| with respect to 	tω is necessary to exist the divergence of the second moment.

ε, which has been calculated as −	tω/ log (eigenvalue). It is especially interesting that the
sudden increase of the relaxation time is seen in the plot concerning the second moment, which
corresponds to divergence of the second moment. The same behaviour is similar to the critical
slowing down as seen at phase transitions in thermodynamics. The property that the time order
can be far from that of the deterministic original equation by adjusting the parameters 	tω or ε
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Figure 3. The divergence behaviour of the second moment at ε = 0.88 with respect to 	tω
is indicated here. The second moment becomes infinite corresponding to the negative region of
|I−L| as shown in figure 2. The negative value of the second moment is considered to be physically
meaningless.

Figure 4. This plot shows the relaxation time calculated from one of the eigenvalues of L with
respect to ε when α = 1.2, ω0 = 4. By referring to figure 1, it is found that the relaxation time
becomes infinite corresponding to divergence of the second moment. For the case of 	tω = 0.1,
the relaxation time does not become so large, resulting in finite behaviour for the second moment.

describing the property of frequency noise is an essential distinction from the case of constant
ω.

Finally, the results derived from the approximate formulae (34) and (35) can be briefly
discussed. Some of the approximate results are consistent with exact results described above.
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For example, under the condition that 	tf � 0 and 	tω = ∞, both calculations yield the
same value of the second moment 〈1/2αω2

n〉. Furthermore, under the condition that 	tf � 0
and 	tω � 0, approximate second moments are calculated through a troublesome calculation
as for the case of 4ω2 < α2,

lim
	tω→0

lim
	tf →0

〈X2〉eq = 〈f 2〉	tf (k2
+ + k2

−)(k+ + k−)2/αk2
+k

2
−
{
4α2 − (k+ + k−)2

}
= 2〈f 2〉	tf (α2 − 4ω2

0)

×{α2 − 4ω2
0 + 2((α2 − 4ω2

0)
2 − 16ω4

0ε
2)1/2

}
/α
{
(α2 − 4ω2

0)
2 − 16ω4

0ε
2
}

×{α2 + 4ω2
0 − 2((α2 − 4ω2

0)
2 − 16ω4

0ε
2)1/2

}
(72)

and for the case of 4ω2 > α2,

lim
	tω→0

lim
	tf →0

〈X2〉eq = −α〈f 2〉	tf
{
α2(1/k2

+ω
2
+ + 1/k2

−ω
2
−)

+(1/ω2
+ + 1/ω2

+)
}
/
{
4α2 − (k+ + k−)2

}
+ 2〈f 2〉	tf (4ω2

0 − α2)/αk2
+k

2
−

= 8〈f 2〉	tf α
{
4ω2

0 + ε2(α2 − 4ω2
0)
}
/
{

4ω2
0 + α2 + ((4ω2

0 − α2)2 − 16ω4
0ε

2)1/2
}

×{(4ω2
0 − α2)2 − 16ω4

0ε
2
}
(1 − ε2)

+2〈f 2〉	tf (4ω2
0 − α2)/α

{
(4ω2

0 − α2)2 − 16ω4
0ε

2
}

(73)

where k± =
√
α2 − 4ω2

0(1 ± ε) or
√

4ω2
0(1 ± ε) − α2. These limiting procedures cannot be

interchanged because of the assumption of (28), If ε = 0, which meansω does not change with
time, this result is, of course, in agreement with equation (50). Furthermore, these moments
can be infinite by the limiting procedure ε → |α2/4ω2

0 − 1|. However, this critical point is
different from the exact results obtained above.

Transient behaviour of the first and second moment of the displacement can also be
discussed starting from (34) and (35). It indicates a difference from the case of constant ω.
For example, The expression of 〈(Y (1)

n )2〉 can be easily obtained in the same way (52) was
obtained from (39).

〈(Y (1)
n )2〉 = 〈(!(+))2〉n(〈(Y (1)

0 )2〉 − 〈(Y (1))2〉eq) + 〈(Y (1))2〉eq . (74)

〈(!(+))2〉n can be calculated by substituting (19) for (31), the value of which depends on 	tω
and ε but is not similar to exact results. Another point which can be easily derived from the
approximation is the fact that the variance 〈(Xn −〈Xn〉)2〉 is dependent on the initial condition
ofX0 and (dX/dt)n0. This fact is confirmed by the calculation ofYn−〈Yn〉. From (34) and (35)
the expression of Yn − 〈Yn〉 has a term

∏n
j=1 !

(+)
j Y

(1)
0 − 〈(!(+))n〉Y (1)

0 , where terms including

the expression of Y (1)
0 and Y (2)

0 do not vanish in the expression of the variance 〈(Xn −〈Xn〉)2〉,
while for the case of constant ω, where y(1)0 and y

(2)
0 do not appear at all in (58).

5. Discussion

The moments of the displacement x(t) which is subject to the stochastic differential equation
(1) is of principal interest. The main exploitation is to make the analytical integration possible
by using noise which varies discretely in time and by assumption of (28). It is a remarkable
point that we can extract the effect of the frequency fluctuation in the matrix (33). The results
obtained by this idea are enumerated as follows.
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In section 3, equilibrium values of the first moment 〈x〉eq and the second moment 〈x2〉eq for
the case of constantωwere derived. The result infers that the small time correlation length of the
driving force hardly corrects the value of the equilibrium moment (45) which is the well known
formula f 2/(2αω2). The transient values of the moment 〈x2

l 〉 and the variance 〈(xl − 〈xl〉)2〉
are also derived as (54), (59) and (60), from which it is found that the relaxation time before
reaching to equilibrium value or oscillating state is similar to the original deterministic equation.
This behaviour is completely changed by considering frequency fluctuation as discussed in
section 4. It is interesting that the transient values of the variance 〈(xl − 〈xl〉)2〉 can oscillate
with time, while it is not surprising that 〈xl〉 can oscillate with time just like a solution of the
deterministic differential equation.

In section 4, equilibrium values of the second moment 〈x2〉eq are calculated starting from
the exact recursion relation of (29) or approximate relation of (34) and (35). The approximated
formula is easy to manipulate, but may sometimes yield quite different results from the correct
one. The behaviour of the exact second moment calculated under the assumption of two-
valued frequency fluctuations brings about an infinity region of 〈x2〉eq as shown in figure 1.
The divergence behaviour corresponds to earlier known results reviewed in section 1. The
most noticeable point we have obtained is that the divergence is related to the value of the
determinant |I − L|. This is due to the fact that the divergence point is given by zeros of
|I − L| with respect to 	tω as seen in figure 2. However, the explicit form of the divergence
point cannot be estimated from |I − L|, which can be mathematically involved. It should be
noted that this formulation is correct only when the time correlation of the frequency fluctuation
is ignored. It is surprising that the explicit form of 〈x2〉eq derived from previous works turns
into a very simple form which can be interpreted as renormalization of the parameter α.
Approximate results also yield the divergence behaviour of second moments as seen in (72)
and (73). It indicates that the second moments tend to infinity in the very least case of using
the limiting procedure lim	tω→0 lim	tf →0. Although both results are in agreement with each
other in a qualitative manner, the divergence points clearly occur at different intervals for both
the approximate and correct results. The distinction can be better understood from the fact
that the approximate results approach is only considered to be valid when the intensity of the
frequency fluctuations is relatively small, while an extremely rapid increase of 〈x2〉eq suddenly
takes place when the intense frequency fluctuation becomes large.

Note that the divergence does not always mean that the displacement does not have an
equilibrium probability distribution. This is to be understood by the power-law behaviour of
the probability distribution as discussed in other papers [12–14]. The power-law behaviour
becomes possible, given that the second moment approaches an infinite value. This was also
analysed using a Fokker–Planck-type equation, which infers a power-law distribution [21],
according to which the distribution does not have the form of a canonical distribution. On
the other hand, the considering canonical distribution for the case of only additive noise, the
divergence of the second moment may be related to the transition from a canonical distribution
to a non-canonical one.

Other results derived in section 4 are with regard to the transient values of the moment
〈x2

l 〉 for the case of variable ω. A different point from the constant frequency case is that
the relaxation time of the displacement moments before reaching its equilibrium value can
be controlled by the statistical property of frequency noise ε and 	tω. According to exact
equations with respect to the moments (61) and (65), the transient behaviour of the moments
can be discussed by the eigenvalues of matrices L and L. Furthermore, it is remarkable how
very slow relaxation can be observed near the critical condition of divergence of the moment
as shown in figure 3, which cannot be observed in the approximate formulation. The dynamics
may be more essential than the equilibrium property when the slow dynamics is realized or the
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equilibrium values of the moments do not exist. So it is significant that the dynamical property
of this problem can be derived from the matrices we have found.

Interesting results concerning the statistical property of the solution of the linear stochastic
equation with two random coefficients have been obtained and some effects of the frequency
fluctuation have been clarified without an approximation. However, the time correlation of
the driving force and the frequency fluctuation between different time intervals were not
considered. Further research on these will provide both an introduction to practical phenomena
and further understanding of the relation between the characteristics of the noise and the
stochastic behaviour of the system. The approximate formulation in which interaction between
two decreasing modes is ignored can possibly be the starting point for considering the case of
more complicated noise and thus be of use for further studies.
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